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cDNA of YP4, a Follicular Epithelium Yolk Protein Subunit,
in the Moth, Plodia interpunctella
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YP4, a subunit of the follicular epithelium yolk protein in the
moth, Plodia interpunctella, is produced in the follicle cells dur-
ing vitellogenesis and after secretion is taken up into the oocyte
and stored in the yolk spheres for utilization during embryogen-
esis. In order to identify the cDNA clones for YP4, a degenerate
PCR primer was designed to six amino acid residues identified
in the NH2-terminal sequence of mature YP4. The YP4 degener-
ate primer plus T7 reverse PCR primer produced a PCR prod-
uct from a cDNA library for the majority of the YP4 coding
sequence. Combined cDNA and 5¢ RACE sequencing showed the
YP4 transcript to be 991 bp in length with a single open reading
frame for a predicted polypeptide of 299 amino acids. Northern
analysis showed a single YP4 transcript was present in ovarian
RNA that was approximately 1 kb in length. The predicted amino
acid sequence for YP4 from P. interpunctella was most closely
related to the predicted YP4 protein from the moth, Galleria
mellonella, and the spherulin 2a protein from the slime mold,
Physarum polycephalum. Arch. Insect Biochem. Physiol. 40:157–
164, 1999. Published 1999 Wiley-Liss, Inc.†
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INTRODUCTION

The production and accumulation of protein
yolk in the eggs of many animals follows a simi-
lar paradigm; vitellogenin that is synthesized and
secreted from extra-ovarian tissues is taken up
by the oocyte and packaged in yolk spheres (bod-
ies) to provide nutrients during embryogenesis.
However, not all yolk proteins that are packaged
in the oocytes of insects originate outside of the
ovary. In the higher Diptera and in some Lepi-
doptera, the follicular epithelial cells that sur-
round the oocyte also synthesize and secrete
proteins that contribute a major component to the
proteinaceous yolk (Bownes, 1982; Shirk et al.,
1984). In moths, the yolk proteins produced by
the follicular epithelium either have a homo- or
hetero-subunit composition. The homo-subunit

type, such as paravitellogenin (70 kDa) from
Hyalophora cecropia (Bast and Telfer, 1976; Telfer
et al., 1981) and egg-specific protein (ESP at 72
kDa) from Bombyx mori (Ono et al., 1975; Irie
and Yamashita, 1983; Zhu et al., 1986; Indrasith
et al., 1988; Sato and Yamashita, 1991), consist
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of a single subunit that associates as dimers or
tetramers. The hetero-subunit type, such as folli-
cular epithelium yolk protein (FEYP) with sub-
units YP2 (69 kDa) and YP4 (33 kDa) from Plodia
interpunctella (Shirk et al., 1984; Bean et al.,
1988) and other pyralid moths (Shirk, 1987), have
two subunits that associate in dimeric and tet-
rameric forms. Typically, the FEYPs contribute
approximately 25–40% of the proteinaceous ma-
terial to the oocytes.

In the moth P. interpunctella, the FEYP is syn-
thesized in the follicular epithelial cells of
vitellogenic follicles present in pharate adult fe-
males (Shirk et al., 1984; Bean et al., 1988;
Zimowska et al., 1994, 1995a,b). Although the two
subunits are present in the yolk spheres of ma-
ture eggs in equal molar concentrations, the syn-
thesis and secretion of YP2 by the follicular
epithelial cells appear to precede the synthesis of
YP4 as determined by immuno-gold labeling stud-
ies (Zimowska et al., 1994). YP2 was detected in
the follicular epithelial cells and the early yolk
spheres of oocytes in provitellogenic follicles prior
to the onset of patency while YP4 was detected only
after the onset of patency. Whether this temporal
separation in appearance of the different subunits
is the result of non-coordinate expression of the
two genes or a result of a temporal difference in
the apparent antigenicity of the two subunits could
not be determined using the immuno-gold labeling
technique. Previously, the cDNA for the YP2 sub-
unit from P. interpunctella (Shirk and Perera, 1998)
and the cDNA for YP4 from Galleria mellonella
(Rajaratnam, 1996a) were cloned. To obtain pri-
mary sequence information for an analysis of YP4
structure and to provide tools for the spatial dis-
tribution of YP4 transcript present in these stages
of follicles, we set about to clone the cDNA for YP4
from P. interpunctella.

MATERIALS AND METHODS

The P. interpunctella (Hübner) colony was
reared according to Silhacek and Miller (1972) in
a 16 h light:8 h dark cycle at 30°C and 70% rela-
tive humidity. All molecular biological procedures
were conducted as described in Sambrook et al.
(1989) unless otherwise stated.

cDNA Library Construction and Screening

Total RNA was extracted from the vitel-
logenic ovaries of late pharate adult females us-
ing an RNA extraction kit (Pharmacia Biotech,
Piscataway, NJ). To construct the cDNA library,

poly(A)+ RNA was isolated from total RNA by two
cycles of chromatography through oligo(dT)-cel-
lulose columns. The Library Construction Core
Laboratory, Interdisciplinary Center for Biotech-
nology Research, University of Florida, prepared
the cDNA library. The cDNA library was con-
structed from poly(A)+ RNA of the ovaries. cDNA
was synthesized with the Lambda ZAP II cDNA
Synthesis Kit (Stratagene, La Jolla, CA) using
an oligo(dT) primer with an XhoI linker. The
cDNA was size-fractionated on a Sephacryl S-400
column with a minimum size cutoff of 0.5 kb. An
EcoRI adaptor was added to the 5′ end of the
cDNA. The cDNA was cut with EcoRI and XhoI
and then ligated into Lambda ZAP II arms that
were restriction digested with EcoRI and XhoI.
The ligation was packaged into lambda phage ac-
cording to the manufacturer’s protocols.

Affinity purified polyclonal antibodies for YP4
(Shirk et al., 1992) were prepared as described by
Robinson et al. (1988). The cDNA library was
screened with the affinity purified antibodies by the
plaque method of Huynh et al. (1985).

Amino Acid Sequence Analysis

The follicular epithelium yolk protein was
purified as described previously (Bean et al, 1988)
and resolved by SDS-PAGE. The protein was
electroblotted to Trans-Blot membrane (BioRad,
Hercules, CA) and the YP4 band was cut from
the total membrane. The Protein Chemistry Core
Facility of the Interdisciplinary Center for Bio-
technology Research, University of Florida, se-
quenced NH2-terminal amino acids of YP4. The
NH2-terminal amino acid sequence of the frag-
ments was determined by automated dansyl-
Edman degradation using an on-line sequencing
analyzer (Model 470A, Applied Biosystems, Fos-
ter City, CA) as described by Walker (1984).

PCR Analysis

Direct PCR of YP4 sequence from the pharate
adult ovarian cDNA library utilized a degenerate
forward primer (5′GGNGARTTYAAYGAYGA3′) cor-
responding to the six amino acid residues GEFNDD
from the NH2-terminal sequence of YP4 in combi-
nation with the T7 reverse PCR primer specific for
the pBluescript II SK phagemid.

The 3′ RACE product for YP4 was produced
using the 5′ RACE kit (GIBCO/BRL, Gaithers-
burg, MD). The 3′ RACE utilized the GEFNDD
forward degenerate primer in conjunction with
the 3′ RACE adapter primer (5′GGCCACGCGTC-
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GACTAGTAC(T)17
3′) to amplify the sequence fol-

lowing the synthesis of the first cDNA strand.
The structure of the 5′ end of the YP4 tran-

script was determined by 5′ RACE essentially as
directed in the kit (GIBCO/BRL). The 5′ RACE
utilized the YP4R1 reverse primer and the YP4R2
reverse primer as the primary and nested prim-
ers, respectively. The 5′ RACE PCR products were
TA cloned into pCR2.1 (Invitrogen, Carlsbad, CA)
and sequenced.

DNA Sequencing

The DNA Sequencing Core Laboratory, In-
terdisciplinary Center for Biotechnology Re-
search, University of Florida, sequenced the
various cloned DNA. The sequencing of all cDNA
and 5′ RACE products was accomplished by the
Taq DyeDeoxy Terminator (no. 401388) and Dye-
Primer (no. 401386) Cycle Sequencing protocols
developed by Applied Biosystems (a division of
Perkin-Elmer Corp., Foster City, CA) using fluo-
rescent-labeled dideoxynucleotides and primers,
respectively. The labeled extension products were
analyzed on a Model 373A DNA Sequencer (Ap-
plied Biosystems).

The DNA and the conceptual translation se-
quences were used to search peptide and nucleotide
sequence databases using the BLAST (Altschul et
al., 1990) network service. Alignments for the DNA
sequences and the predicted amino acid sequences
were produced using ClustalW within the Mac-
Vector 6.0.1 software (Oxford Molecular Group,
Campbell, CA) as were the Kyte-Doolittle hydropa-
thy plots (Kyte and Doolittle, 1982).

Northern Analysis

Total RNA from ovaries, testes, and somatic
tissues of pharate adults was isolated using
TRIZOL reagent (GIBCO/BRL). Northern analy-
sis was carried out using NorthernMax (Ambion,
Austin, TX) reagents. Five micrograms of total
RNA of each sample was resolved in a 1% formal-
dehyde agarose gel. The gel was run for 4 h at 60
V with buffer re-circulation. One lane of the 0.24–
9.5kb RNA Ladder (GIBCO/BRL) was included in
the gel to determine the size of the target mRNA.
The RNA was then transferred onto a Nytran
blotting membrane (Schleicher & Schuell, Keene,
NH) by downward capillary transfer using the
rapid transfer buffer of the NorthernMax reagent
system. After 1 h, the transfer apparatus was dis-
assembled, the membrane was washed in the
transfer buffer briefly and UV cross-linked using
a Stratalinker (Stratagene).

Prehybridization and hybridization of the
Northern blot was carried out at 48°C in the
NorthernMax hybridization buffer. The radiola-
beled YP4 probe was synthesized by amplifica-
tion of a 500-bp fragment of a YP4 clone isolated
in the 5′ RACE procedure. The amplification re-
action contained 10 pg of template DNA, 7.5 mmol
of alpha 32PdCTP (10 µCi/mmol), 10 pmol each of
PiYP4R2 and 5′ RACE universal amplification
primer (UAP), 100 nmol each of dATP, dGTP, and
dTTP, and 2.5 mM MgCl2 in a 15-µl volume. Cy-
cling parameters were the same as for the ampli-
fication step in the 5′ RACE procedure except that
only 20 cycles of amplification were performed.
Probe for the RNA Ladder was made by random
prime labeling of λ DNA according to the kit
manufacturer (Boehringer Mannheim, Indianapo-
lis, IN). The probes were purified from unincor-
porated nucleotides and primers using a BioGel
P60 (100-200 mesh) (BioRad) column. Heat de-
natured probe was added to the hybridization
buffer and incubated overnight. At the end of hy-
bridization, the probe was removed and the filter
was washed twice with NorthernMax low strin-
gency wash buffer at room temperature and then
twice with high stringency wash buffer at 48°C
for 15 min each. An X-ray film (Kodak, Roches-
ter, NY, XOMAT AR) was exposed to the blot for
6 h to visualize the signal.

RESULTS

cDNA and Predicted Amino Acid Sequences
of YP4

Approximately 105 plaques of the ovarian
cDNA library were screened with antigen affin-
ity purified antiserum to YP4 without any posi-
tive clones being identified. As an alternate
strategy for the isolation of a YP4 cDNA clone, a
degenerate PCR primer corresponding to the
amino terminal amino acid sequence was identi-
fied and used to produce a PCR product.

The first 30 NH2-terminal amino acids of ma-
ture YP4 from 4-h-old eggs were determined. The
sequence of the NH2-terminal amino acid residues
were, RIDVQLSGEFNDDSHNNLKVYYSGSQ-
ASVI, which shared no strong similarity with any
known sequences including YP4 from G. mellonella.

The degenerate forward PCR primer corre-
sponding to the six amino acid residues GEFNDD
from the NH2-terminal amino acid sequence of
YP4 was made and used in combination with the
T7 reverse PCR primer specific for the pBluescript



160 Perera and Shirk

II SK phagemid. When utilizing these two prim-
ers with phage DNA from the pharate adult
ovarian cDNA library, the PCR product was ap-
proximately 800 bp in size. By doing 3′ RACE
using mRNA from vitellogenic ovaries, the degen-
erate GEFNDD forward primer in combination
with an oligo(dT) primer produced a product of
800 bp as well. The direct YP4 PCR product from
the ovarian cDNA library was cloned into pCR2.1
and sequenced. The sequence of the PCR product
showed that it included a large open reading
frame that corresponded in part to the NH2-ter-
minal amino acid residues downstream from the
GEEFNDD sequence used for the PCR primer.
When aligned with the predicted amino acid se-
quence for YP4 from G. mellonella (Rajaratnam,
1996a), there was considerable identity shared be-
tween the partial sequence for YP4 from P.
interpunctella and YP4 from G. mellonella (see

Fig. 3). In order to determine the 5′ sequence of
the YP4 transcript, ovarian mRNA was used to
perform 5′ RACE PCR as described to produce
the sequence. The YP4 5′ RACE products were
cloned into pCR2.1 and sequenced.

The complete cDNA sequence for YP4 was
989 bp in length with a single open reading frame
that encoded a 299 amino acid polypeptide (Fig.
1). Northern analysis showed that a single tran-
script of approximately 1 kb was present in
vitellogenic follicles from ovaries of pharate adult
females (Fig. 2). The YP4 transcript was present
in low amounts in pre-vitellogenic and post-
vitellogenic follicles but not detected at all in
other tissues of the female abdomen or in testes
or pharate adult male abdomens. The 30 amino
acid sequence derived from the NH2-terminal se-
quencing of YP4 was identical with amino acids
17 to 47 of the predicted amino acid sequence from

Fig. 1. The nucleotide sequence and predicted amino acid
sequence for the consensus YP4 cDNA. Panel A. The YP4
sequence was completed by 5′ RACE analysis. The 5′ RACE
utilized the YP4R1 (5′AGATTCAGATTTCTCCGTGTTG3′) re-
verse primer and the YP4R2 (5′TGTGTAAGAGAAAGC-
CGTCTT3′) reverse primer as the primary and nested
primers, respectively. The nucleotide position is indicated
on the right, and the predicted amino acid position is indi-

cated on the left. The adenine of the first methionine codon
is designated as +1 in the nucleotide sequence. The predicted
amino acid sequence of the open reading frame is shown
under the nucleotide sequence in the single-letter amino acid
code. The single underlined sequence is the 30 amino acid
sequence from the N-terminal of mature YP4. The bold-un-
derlined sequence shows the poly(A)+ addition signal begin-
ning at base 1939.
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Fig. 2. Northern analysis of YP4 transcript in mRNA from
late pharate adults. Total RNA (5 µg per lane) from pre-
vitellogenic follicles, vitellogenic follicles, and post-vitellogenic
follicles of late pharate adult female ovaries, abdomens with-
out ovaries from late pharate adult females, testis, and abdo-
mens without ovaries from late pharate adult males was

resolved in denaturing gel conditions and then blotted to a
membrane. The blot was hybridized to labeled probe made from
the 5′ RACE clones as described. Labeled lambda DNA was
included in the hybridization mix, and the position of the brack-
eting size markers is shown on the left.

the cDNA except for amino acid 45. This differ-
ence may be due to an error in the amino acid
sequencing, but was not resolved by resequencing
of the protein. The 3′ noncoding region of the
cDNA was 33 bp long and contained one AATAAA
poly(A)+ addition signal.

Sequence Similarity Between YP4 and
Other Proteins

The cDNA sequence and the predicted YP4
amino acid sequence from P. interpunctella were
BLAST searched against the available gene and
protein banks. The greatest sequence similarity
was shared with the YP4 gene from G. mellonella
(smallest sum probability = 9.3 × 10–90; Rajarat-
nam, 1996a) (Fig. 3). The YP4 sequence also had
similarity with the spherulin 2a gene from the

slime mold, Physarum polycephalum (smallest
sum probability = 1.7 × 10–29; Bernier et al., 1987).
The alignment of the P. interpunctella and G.
mellonella YP4 gene products showed differences
in the 5′ and 3′ regions. Of the first 30 NH2-ter-
minal amino acids of the matureYP4 from eggs
of P. interpunctella, the predicted amino acid se-
quence for YP4 from G. mellonella and YP4 from
P. interpunctella had 4 identities and 8 conserva-
tive substitutions (40% similarity), while the last
50 amino acid residues of the C-terminal of the
two proteins had 4 identities and 10 conserva-
tive substitutions (28% similarity). On the other
hand, the central regions of the two proteins has
117 identities with 24 conservative substitutions
without any insertions or deletions (70% similar-
ity). Over the same central region, spherulin 2a
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had 48% similarity with YP4 from P. interpunc-
tella. Even with this level of similarity, compari-
son of the Kyte-Doolittle hydropathy plots for
these three proteins showed there was little cor-
respondence of the hydrophilic/hydrophobic re-
gions among them (data not presented).

 DISCUSSION

A complete cDNA sequence that coded for YP4
from P. interpunctella was derived from a combina-
tion of direct PCR and 5′ RACE. The transcript for
YP4 was abundant in vitellogenic follicles but barely
detectable in pre- or post-vitellogenic follicles. These
data are consistent with the observations using
immunogold labeling with YP4 antiserum to detect
the presence of the polypeptide. YP4 transcript was
not detectable in other tissues of the vitellogenic
female or males.

The YP4 cDNA from P. interpunctella en-
coded a single polypeptide of 299 amino acids. The
predicted amino acid sequence has greatest simi-
larity with YP4 from G. mellonella and to a lesser
extent with spherulin 2a, a coat glycoprotein pro-
duced during encystment, from the slime mold,
P. polycephalum. Over the entire sequence, the
predicted amino acid sequences of the YP4 from P.
interpunctella and G. mellonella had 133 identities
(44%) with 59 additional conserved substitutions
(64% total similarity). The overall similarity of YP4
with the predicted amino acid sequence for spheru-
lin 2a was lower (50% for P. interpunctella and 47%
for G. mellonella). Even though there was some

similarity between the YP4 sequences from the
two moths and spherulin 2a, analysis of the se-
quences with the Kyte-Doolittle hydropathy plots
showed there was no apparent conservation of hy-
drophilic/hydrophobic regions between any of the
three proteins (data not shown). The YP4 se-
quences from neither moth shows any similarity
with the sequences for other yolk proteins pro-
duced by the follicular epithelium (i.e., YP2 from
P. interpunctella and G. mellonella, ESP from B.
mori, or YP1, YP2, and YP3 from D. melanogaster
and other flies), or vitellogenin from any species.

Structural differences between the predicted
amino acid sequences for YP4 from P. interpunc-
tella and G. mellonella are also apparent in the
amino acid composition ratios. The G. mellonella
YP4 sequence has a high Glx (Glu + Gln) residue
content (approximately 14 %; Rajaratnam, 1996a)
which is typical of many yolk proteins (Byrne et
al., 1989). However, the P. interpunctella YP4 se-
quence has approximately 9.7% Glx residues
which is more typical of other eukaryotic proteins
(Table 1). Similar to P. interpunctella YP4, the
predicted amino acid sequence for spherulin 2a
is also in the typical eukaryotic range with 10.8%
Glx content. When compared with other yolk pro-
teins that have been cloned from Lepidoptera,
YP4 from P. interpunctella and microvitellogenin
from Manduca sexta (Wang et al., 1988) are the
only two proteins that have a Glx content within
the range of typical eukaryotic proteins (Table 1).
What this means to protein function within the
egg is not clear.

Fig. 3. Alignment of the predicted YP4 amino acid sequence
of P. interpunctella with YP4 from G. mellonella and
Spherulin 2a from the slime mold, Physarum polycephalum.
. = insertions; - = identical amino acids between amino acid
residues in YP4 and other amino acid sequences; lowercase

= conservative amino acid substitution; GmYP4 = YP4 from
G. mellonella (smallest sum probability = 9.3 ×10–90); PiYP4
= YP4 from P. interpunctella; S2a = spherulin 2a from P.
polycephalum (smallest sum probability = 1.7 × 10–29).
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TABLE 1. Glutamine/Glutamic Acid Content of Yolk
Proteins From Lepidoptera*

Species Protein (accession no.) %Glx

M. sexta mVg1 (M28820) 8.8
P. interpunctella YP4 (AF092741) 9.7
B. mori ESP2 (D12521) 11.3
P. interpunctella YP23 (AF063014) 11.7
G. mellonella YP24 (U69881) 12.5
B. mori Vg5 (D13160) 12.8
L. dispar Vg6 (U90756) 12.9
G. mellonella Yp47 (U22425) 14

*mVg = microvitellogenin from M. sexta (Wang et al., 1988);
ESP = egg specific protein from B. mori (Inagaki and
Yamashita, 1989); YP2 = YP2 from P. interpunctella (Shirk
and Perera, 1998); YP2 = YP2 from G. mellonella (Rajarat-
nam, 1996b); Vg = vitellogenin from B. mori (Yano et al.,
1994); Vg = vitellogenin from Lymantria dispar (Hiremath
and Lehtoma, 1997); YP4 = YP4 from G. mellonella (Rajarat-
nam, 1996a).

Considering the close phylogenetic relationship
between P. interpunctella and G. mellonella (Solis
and Mitter, 1992), we find it interesting that both
of the FEYP subunits, YP2 and YP4, have signifi-
cantly divergent amino acid sequences between
these two species without apparent impact on yolk
formation or embryogenesis. A cladistic analysis of
the family Pyralidae placed the Galleriinae subfam-
ily, which includes G. mellonella, basal to the
Phycitinae subfamily, which includes P. interpunc-
tella (Solis and Mitter, 1992). For the YP2 subunit,
the divergence appears in the amino terminus of
YP2 from P. interpunctella that has a large sequence
insert that is not present in YP2 of G. mellonella
(Shirk and Perera, 1998). For the YP4 subunit, the
divergence occurs in the amino and carboxyl termi-
nal amino acid sequences. A BLAST search with
the 60 amino acids from either the amino or car-
boxyl terminus of YP4 from P. interpunctella does
not result in the selection of identity with YP4 from
G. mellonella. This shows that over 120 amino acid
residues (40% of the length) of these proteins share
no identity. In addition, the Glx content is signifi-
cantly different between YP4 from the two species.
These data suggest that an analysis of the homolo-
gous genes from other members of the Pyralidae
may provide a convenient marker for assessing the
evolutionary divergence for this family.
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